

New approaches to improving the supply of phosphorus

Robin Walker

Organic Producer Conference Harper Adams, 7-8th January 2010

PLINK Project (Defra LINK)

Range of approaches investigated to make P from phosphate rock (PR) more available to crops

- Biological processes harnessed
 - Using a crop's own ability to liberate P
 - P available to crop directly and/or to following crops
 - Co-composting of PR with organic wastes
 - Microbial processes liberate P into plant available form

Rotational Aspects

- Autumn sown green manures (GM)
 - GM crops chosen for their perceived ability to liberate P
 - GM established in the autumn
 - Incorporated prior to spring crop
- Spring sown crops
 - Crops grown for their perceived ability to liberate P and use it directly themselves
 - Potential P benefits later in the rotation

Autumn sown green manures

GM yield in spring (Dry tonnes / ha)

GM P Uptake (kg / ha)

Сгор	+PR	-PR	% Change from -PR	Сгор	+PR	-PR	% Change from -PR
Fallow	0.70	0.46	152	Fallow	2.32	1.39	167
Mixed Brassica	0.78	0.51	152	Mixed Brassica	2.49	1.57	159
Field Beans	0.98	0.82	120	Field Beans	3.39	2.77	122
Forage Rape	0.58	0.37	157	Forage Rape	1.91	1.14	168
Forage Rye	0.68	0.48	142	Forage Rye	2.09	1.32	158

Data from Abbey Home Farm site

Biomass effect

Autumn sown green manures: Following year's Spring Wheat

Wheat grain yield (t / ha)

Crop	+PR	-PR	% Change from -PR
Fallow	1.36	1.31	103
Mixed Brassica	1.49	1.40	107
Field Beans	1.50	1.40	108
Forage Rape	1.37	1.29	106
Forage Rye	1.37	1.24	110

Data from Abbey Home Farm site

- Rotational benefits
 - Brassicas
 - Field beans
 - Forage rye
- N as well as P?

Spring sown crops

Windshiel Farm

Buckwheat

Spring sown crops: Crop biomass

Data from Windshiel Farm

Spring sown crops: P uptake

Data from Windshiel Farm

Compost field trial 2009

- Composting started 16th January 2009
 - Organic Recycling Limited on concrete pad
 - uncovered
 - PAS100 standard
 - Substrate
 - 2 tonnes wheat straw
 - 6 tonnes cabbage leaf and brussel sprout waste
 - PR treatments (granular formulation)
 - 0 kg (-PR) and 250 kg (+PR)

Application of compost to trials

- Plot size 120 m²
- 96 kg compost applied per plot
 - Based on 8 t/ha application rate
 - Estimated to supply 100 kg P per ha (+PR) and 20 kg P per ha (-PR) based on previous data
- Total P actually applied (kg P per ha)
 - From compost
 - Around 50% of expected amount (due to losses)
 - From PR ~ 72 kg P per ha

Composting 2009

- Predicted P in compost not as high in reality
 - variability shown between batches sent to each site, although all from same compost
 - Total P as well as AEM P
- Factors that influenced P?
 - Environment
 - Temperature
 - Rainfall
 - Chemistry
 - Ca / P interactions

Compost field trial

- Windshiel
 - Farmer's crop: Barley silage mixture

Compost field trial

Abbey Home Farm

 Farmer's crop was buckwheat

Summary: Rotations

- Some crops better at accessing P from PR
 - Buckwheat
 - Brassica species
- Rotational effects can be positive
 - P availability (and N)
 - Brassicas
 - Field Beans
 - Forage rye
 - Buckwheat?

Summary: Compost

- Co-compositing can have beneficial effects on P availability
 - Results not always consistent
 - Longer term benefits may be possible
- Adding more PR to compost does not always increase P availability
 - AEM-P affected by citric acid levels
 - High CA levels can reduce AEM-P
 - Importance of Ca?
 - Still being investigated

Acknowledgements

Sponsors:

Defra Sustainable Arable LINK Scottish Government RERAD

Academic Partners:

SAC

Newcastle University

Dr Tony Edwards

Prof David Atkinson

Mr Johnny Johnston

Industry Partners: Bulmer Foundation SOPA Soil Association J & H Bunn Ltd Tio Ltd Abbey Home Farm The Leen Windshiel Farm **Organic Recycling Ltd** Organic Farm Foods Ltd **Organic Green Orchards Ltd**

Svccess through Knowledge